The probability of particular events

Philosophy of Science 38 (3):327-343 (1971)
The paper investigates what are the proper procedures for calculating the probability on certain evidence of a particular object e having a property, Q, e.g. of Eclipse winning the Derby. Let `α ' denote the conjunction of properties known to be possessed by e, and P(Q)/α the probability of an object which is α being Q. One view is that the probability of e being Q is given by the best confirmed value of P(Q)/α . This view is shown not to be generally true, but to provide a useful approximation in many cases. Then given that we have information about the observed frequencies of Q among objects having one or more of the properties whose conjunction forms α , the paper shows how to establish which value of P(Q)/α is the best confirmed one
Keywords No keywords specified (fix it)
Categories (categorize this paper)
DOI 10.1086/288374
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 23,201
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

13 ( #334,518 of 1,940,952 )

Recent downloads (6 months)

1 ( #457,798 of 1,940,952 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.