Opening Two Envelopes

Acta Analytica 25 (4):479-498 (2010)
Abstract
In the two-envelope problem, one is offered a choice between two envelopes, one containing twice as much money as the other. After seeing the contents of the chosen envelope, the chooser is offered the opportunity to make an exchange for the other envelope. However, it appears to be advantageous to switch, regardless of what is observed in the chosen envelope. This problem has an extensive literature with connections to probability and decision theory. The literature is roughly divided between those that attempt to explain what is flawed in arguments for the advantage of switching and those that attempt to explain when such arguments can be correct if counterintuitive. We observe that arguments in the literature of the two-envelope problem that the problem is paradoxical are not supported by the probability distributions meant to illustrate the paradoxical nature. To correct this, we present a distribution that does support the usual arguments. Aside from questions about the interpretation of variables, algebraic ambiguity, modal confusions and the like, most of the interesting aspects of the two-envelope problem are assumed to require probability distributions on an infinite space. Our next main contribution is to show that the same counterintuitive arguments can be reflected in finite versions of the problem; thus they do not inherently require reasoning about infinite values. A topological representation of the problem is presented that captures both finite and infinite cases, explicating intuitions underlying the arguments both that there is an advantage to switching and that there is not
Keywords Conditional expectation  Exchange paradox  Epistemic possibility  Bounded and unbounded values  Decision theory  Topology
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 12,088
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

View all 21 references

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Added to index

2010-04-03

Total downloads

42 ( #43,728 of 1,102,030 )

Recent downloads (6 months)

10 ( #24,850 of 1,102,030 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.