A physicalist account of mathematical truth

Realists, Platonists and intuitionists jointly believe that mathematical concepts and propositions have meanings, and when we formalize the language of mathematics, these meanings are meant to be reflected in a more precise and more concise form. According to the formalist understanding of mathematics (at least, according to the radical version of formalism I am proposing here) the truth, on the contrary, is that a mathematical object has no meaning; we have marks and rules governing how these marks can be combined. That’s all.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index Translate to english
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 15,865
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

56 ( #59,383 of 1,724,878 )

Recent downloads (6 months)

7 ( #93,208 of 1,724,878 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.