Frege versus Cantor and dedekind: On the concept of number

Abstract
There can be no doubt about the value of Frege's contributions to the philosophy of mathematics. First, he invented quantification theory and this was the first step toward making precise the notion of a purely logical deduction. Secondly, he was the first to publish a logical analysis of the ancestral R* of a relation R, which yields a definition of R* in second-order logic.1 Only a narrow and arid conception of philosophy would exclude these two achievements. Thirdly and very importantly, the discussion in §§58-60 of the G r u n d l a g e n defends a conception of mathematical existence, to be found in Cantor (1883) and later in the writings of Dedekind and Hilbert, by basing it upon considerations about meaning which have general application, outside mathematics.2..
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 10,330
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA
Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

36 ( #45,675 of 1,096,567 )

Recent downloads (6 months)

3 ( #99,452 of 1,096,567 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.