Proof-theoretic semantics for classical mathematics

Synthese 148 (3):603 - 622 (2006)
Abstract
We discuss the semantical categories of base and object implicit in the Curry-Howard theory of types and we derive derive logic and, in particular, the comprehension principle in the classical version of the theory. Two results that apply to both the classical and the constructive theory are discussed. First, compositional semantics for the theory does not demand ‘incomplete objects’ in the sense of Frege: bound variables are in principle eliminable. Secondly, the relation of extensional equality for each type is definable in the Curry-Howard theory.
Keywords No keywords specified (fix it)
Categories No categories specified
(categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 10,948
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

20 ( #84,468 of 1,100,819 )

Recent downloads (6 months)

1 ( #289,727 of 1,100,819 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.