Variable-free formalization of the Curry-Howard theory

The reduction of the lambda calculus to the theory of combinators in [Sch¨ onfinkel, 1924] applies to positive implicational logic, i.e. to the typed lambda calculus, where the types are built up from atomic types by means of the operation A −→ B, to show that the lambda operator can be eliminated in favor of combinators K and S of each type A −→ (B −→ A) and (A −→ (B −→ C)) −→ ((A −→ B) −→ (A −→ C)), respectively.1 I will extend that result to the case in which the types are built up by means of the general function type ∀x : A.B(x) as well as the disjoint union type ∃x : A.B(x)– essentially to the theory of [Howard, 1980]. To extend the treatment of −→ to ∀ we shall need a generalized form of the combinators K and S, and to deal with ∃ we will need to introduce a new form of the combinator S..
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 16,661
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

14 ( #184,535 of 1,726,249 )

Recent downloads (6 months)

4 ( #183,615 of 1,726,249 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.