Logics of Rejection: Two Systems of Natural Deduction

Logique Et Analyse 146:169-208 (1994)
This paper presents two systems of natural deduction for the rejection of non-tautologies of classical propositional logic. The first system is sound and complete with respect to the body of all non-tautologies, the second system is sound and complete with respect to the body of all contradictions. The second system is a subsystem of the first. Starting with Jan Łukasiewicz's work, we describe the historical development of theories of rejection for classical propositional logic. Subsequently, we present the two systems of natural deduction and prove them to be sound and complete. We conclude with a ‘Theorem of Inversion’.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 12,738
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Ewa Orlowska (1992). Relational Proof System for Relevant Logics. Journal of Symbolic Logic 57 (4):1425-1440.
Torben BraÜner (2005). Natural Deduction for First-Order Hybrid Logic. Journal of Logic, Language and Information 14 (2):173-198.

Monthly downloads

Sorry, there are not enough data points to plot this chart.

Added to index


Total downloads


Recent downloads (6 months)


How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.