Zermelo's Cantorian theory of systems of infinitely long propositions

Bulletin of Symbolic Logic 8 (4):478-515 (2002)
In papers published between 1930 and 1935. Zermelo outlines a foundational program, with infinitary logic at its heart, that is intended to (1) secure axiomatic set theory as a foundation for arithmetic and analysis and (2) show that all mathematical propositions are decidable. Zermelo's theory of systems of infinitely long propositions may be termed "Cantorian" in that a logical distinction between open and closed domains plays a signal role. Well-foundedness and strong inaccessibility are used to systematically integrate highly transfinite concepts of demonstrability and existence. Zermelo incompleteness is then the analogue of the Problem of Proper Classes, and the resolution of these two anomalies is similarly analogous
Keywords No keywords specified (fix it)
Categories (categorize this paper)
DOI 10.2178/bsl/1182353918
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 23,280
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

Add more references

Citations of this work BETA

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

21 ( #221,840 of 1,932,462 )

Recent downloads (6 months)

1 ( #456,114 of 1,932,462 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.