Generalization, similarity, and bayesian inference

Behavioral and Brain Sciences 24 (4):629-640 (2001)
Shepard has argued that a universal law should govern generalization across different domains of perception and cognition, as well as across organisms from different species or even different planets. Starting with some basic assumptions about natural kinds, he derived an exponential decay function as the form of the universal generalization gradient, which accords strikingly well with a wide range of empirical data. However, his original formulation applied only to the ideal case of generalization from a single encountered stimulus to a single novel stimulus, and for stimuli that can be represented as points in a continuous metric psychological space. Here we recast Shepard's theory in a more general Bayesian framework and show how this naturally extends his approach to the more realistic situation of generalizing from multiple consequential stimuli with arbitrary representational structure. Our framework also subsumes a version of Tversky's set-theoretic model of similarity, which is conventionally thought of as the primary alternative to Shepard's continuous metric space model of similarity and generalization. This unification allows us not only to draw deep parallels between the set-theoretic and spatial approaches, but also to significantly advance the explanatory power of set-theoretic models. Key Words: additive clustering; Bayesian inference; categorization; concept learning; contrast model; features; generalization; psychological space; similarity.
Keywords additive clustering   Bayesian inference   categorization   concept learning   contrast model   features   generalization   psychological space   similarity
Categories (categorize this paper)
DOI 10.1017/S0140525X01000061
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 16,667
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

View all 38 citations / Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

14 ( #184,535 of 1,726,249 )

Recent downloads (6 months)

5 ( #147,227 of 1,726,249 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.