Ultimate normal forms for parallelized natural deductions

Abstract
The system of natural deduction that originated with Gentzen (1934–5), and for which Prawitz (1965) proved a normalization theorem, is re-cast so that all elimination rules are in parallel form. This enables one to prove a very exigent normalization theorem. The normal forms that it provides have all disjunction-eliminations as low as possible, and have no major premisses for eliminations standing as conclusions of any rules. Normal natural deductions are isomorphic to cut-free, weakening-free sequent proofs. This form of normalization theorem renders unnecessary Gentzen’s resort to sequent calculi in order to establish the desired metalogical properties of his logical system.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 11,392
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

10 ( #148,525 of 1,102,917 )

Recent downloads (6 months)

1 ( #297,281 of 1,102,917 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.