Ultimate Normal Forms for Parallelized Natural Deductions

Logic Journal of the IGPL 10 (3):299-337 (2002)
The system of natural deduction that originated with Gentzen , and for which Prawitz proved a normalization theorem, is re-cast so that all elimination rules are in parallel form. This enables one to prove a very exigent normalization theorem. The normal forms that it provides have all disjunction-eliminations as low as possible, and have no major premisses for eliminations standing as conclusions of any rules. Normal natural deductions are isomorphic to cut-free, weakening-free sequent proofs. This form of normalization theorem renders unnecessary Gentzen's resort to sequent calculi in order to establish the desired metalogical properties of his logical system.Ultimate normal forms are well-adapted to the needs of the computational logician, affording valuable constraints on proof-search. They also provide an analysis of deductive relevance. There is a deep isomorphism between natural deductions and sequent proofs in the relevantized system
Keywords No keywords specified (fix it)
Categories (categorize this paper)
DOI 10.1093/jigpal/10.3.299
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 23,305
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

29 ( #164,539 of 1,932,583 )

Recent downloads (6 months)

3 ( #272,097 of 1,932,583 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.