Light affine set theory: A naive set theory of polynomial time

Studia Logica 77 (1):9 - 40 (2004)
Abstract
In [7], a naive set theory is introduced based on a polynomial time logical system, Light Linear Logic (LLL). Although it is reasonably claimed that the set theory inherits the intrinsically polytime character from the underlying logic LLL, the discussion there is largely informal, and a formal justification of the claim is not provided sufficiently. Moreover, the syntax is quite complicated in that it is based on a non-traditional hybrid sequent calculus which is required for formulating LLL.In this paper, we consider a naive set theory based on Intuitionistic Light Affine Logic (ILAL), a simplification of LLL introduced by [1], and call it Light Affine Set Theory (LAST). The simplicity of LAST allows us to rigorously verify its polytime character. In particular, we prove that a function over {0, 1}* is computable in polynomial time if and only if it is provably total in LAST.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 12,084
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA
Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

5 ( #237,662 of 1,101,944 )

Recent downloads (6 months)

2 ( #192,006 of 1,101,944 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.