Wittgenstein on the Infinity of Primes

History and Philosophy of Logic 29 (1):63-81 (2008)
It is controversial whether Wittgenstein's philosophy of mathematics is of critical importance for mathematical proofs, or is only concerned with the adequate philosophical interpretation of mathematics. Wittgenstein's remarks on the infinity of prime numbers provide a helpful example which will be used to clarify this question. His antiplatonistic view of mathematics contradicts the widespread understanding of proofs as logical derivations from a set of axioms or assumptions. Wittgenstein's critique of traditional proofs of the infinity of prime numbers, specifically those of Euler and Euclid, not only offers philosophical insight but also suggests substantive improvements. A careful examination of his comments leads to a deeper understanding of what proves the infinity of primes
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,360
External links
  • Through your library Configure
    References found in this work BETA

    No references found.

    Citations of this work BETA
    Daesuk Han (2011). Wittgenstein and the Real Numbers. History and Philosophy of Logic 31 (3):219-245.
    Similar books and articles
    Anthony Birch (2007). Waismann's Critique of Wittgenstein. Analysis and Metaphysics 6 (2007):263-272.

    Monthly downloads

    Added to index


    Total downloads

    26 ( #56,532 of 1,088,810 )

    Recent downloads (6 months)

    1 ( #69,666 of 1,088,810 )

    How can I increase my downloads?

    My notes
    Sign in to use this feature

    Start a new thread
    There  are no threads in this forum
    Nothing in this forum yet.