Order algebras as models of linear logic

Studia Logica 76 (2):201 - 225 (2004)
Abstract
The starting point of the present study is the interpretation of intuitionistic linear logic in Petri nets proposed by U. Engberg and G. Winskel. We show that several categories of order algebras provide equivalent interpretations of this logic, and identify the category of the so called strongly coherent quantales arising in these interpretations. The equivalence of the interpretations is intimately related to the categorical facts that the aforementioned categories are connected with each other via adjunctions, and the compositions of the connecting functors with co-domain the category of strongly coherent quantales are dense. In particular, each quantale canonically induces a Petri net, and this association gives rise to an adjunction between the category of quantales and a category whose objects are all Petri nets.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 11,371
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

5 ( #229,635 of 1,102,818 )

Recent downloads (6 months)

1 ( #296,987 of 1,102,818 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.