A 2-categorial generalization of the concept of institution

Studia Logica 95 (3):301 - 344 (2010)
After defining, for each many-sorted signature Σ = (S, Σ), the category Ter ( Σ ), of generalized terms for Σ (which is the dual of the Kleisli category for , the monad in Set S determined by the adjunction from Set S to Alg ( Σ ), the category of Σ -algebras), we assign, to a signature morphism d from Σ to Λ , the functor from Ter ( Σ ) to Ter ( Λ ). Once defined the mappings that assign, respectively, to a many-sorted signature the corresponding category of generalized terms and to a signature morphism the functor between the associated categories of generalized terms, we state that both mappings are actually the components of a pseudo-functor Ter from Sig to the 2-category Cat . Next we prove that there is a functor Tr Σ , of realization of generalized terms as term operations, from Alg ( Σ ) × Ter ( Σ ) to Set , that simultaneously formalizes the procedure of realization of generalized terms and its naturalness (by taking into account the variation of the algebras through the homomorphisms between them). We remark that from this fact we will get the invariance of the relation of satisfaction under signature change. Moreover, we prove that, for each signature morphism d from Σ to Λ , there exists a natural isomorphism θ d from the functor to the functor , both from the category Alg ( Λ ) × Ter ( Σ ) to the category Set , where d * is the value at d of the arrow mapping of a contravariant functor Alg from Sig to Cat , that shows the invariant character of the procedure of realization of generalized terms under signature change. Finally, we construct the many-sorted term institution by combining adequately the above components (and, in a derived way, the many-sorted specification institution), but for a strict generalization of the standard notion of institution.
Keywords Many-sorted algebra  generalized term  Kleisli construction  institution on a category
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 22,675
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

19 ( #215,649 of 2,255,076 )

Recent downloads (6 months)

4 ( #162,443 of 2,255,076 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.