An evolutionary game theoretic perspective on learning in multi-agent systems

Synthese 139 (2):297 - 330 (2004)
Abstract
In this paper we revise Reinforcement Learning and adaptiveness in Multi-Agent Systems from an Evolutionary Game Theoretic perspective. More precisely we show there is a triangular relation between the fields of Multi-Agent Systems, Reinforcement Learning and Evolutionary Game Theory. We illustrate how these new insights can contribute to a better understanding of learning in MAS and to new improved learning algorithms. All three fields are introduced in a self-contained manner. Each relation is discussed in detail with the necessary background information to understand it, along with major references to relevant work.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 12,068
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

7 ( #194,809 of 1,101,833 )

Recent downloads (6 months)

1 ( #306,516 of 1,101,833 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.