Aspects of analytic deduction

Journal of Philosophical Logic 25 (6):581-596 (1996)
Let ⊢ be the ordinary deduction relation of classical first-order logic. We provide an "analytic" subrelation ⊢a of ⊢ which for propositional logic is defined by the usual "containment" criterion Γ ⊢a φ iff Γ⊢φ and Atom ⊆ Atom, whereas for predicate logic, ⊢a is defined by the extended criterion Γ⊢aφ iff Γ⊢aφ and Atom ⊆' Atom, where Atom ⊆' Atom means that every atomic formula occurring in φ "essentially occurs" also in Γ. If Γ, φ are quantifier-free, then the notions "occurs" and "essentially occurs" for atoms between Γ and φ coincide. If ⊢ is formalized by Gentzen's calculus of sequents, then we show that ⊢a is axiomatizable by a proper fragment of analytic inference rules. This is mainly due to cut elimination. By "analytic inference rule " we understand here a rule r such that, if the sequent over the line is analytic, then so is the sequent under the line. We also discuss the notion of semantic relevance as contrasted to the previous syntactic one. We show that when introducing semantic sequents as axioms, i.e. when extending the pure logical axioms and rules by mathematical ones, the property of syntactic relevance is lost, since cut elimination no longer holds. We conclude that no purely syntactic notion of analytic deduction can ever replace successfully the complex semantico-syntactic deduction we already possess.
Keywords analytic inference rule  analytic deduction  Gentzen sequent calculus  cut-free proof
Categories (categorize this paper)
DOI 10.1007/BF00265254
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 23,209
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

18 ( #255,435 of 1,940,985 )

Recent downloads (6 months)

3 ( #272,533 of 1,940,985 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.