The order structure of continua

Synthese 113 (3):381-421 (1997)
Abstract
A continuum is here a primitive notion intended to correspond precisely to a path-connected subset of the usual euclidean space. In contrast, however, to the traditional treatment, we treat here continua not as pointsets, but as irreducible entities equipped only with a partial ordering ≤ interpreted as parthood. Our aim is to examine what basic topological and geometric properties of continua can be expressed in the language of ≤, and what principles we need in order to prove elementary facts about them. Surprisingly enough ≤ suffices to formulate the very heart of continuity (=jumpless and gapless transitions) in a general setting. Further, using a few principles about ≤ (together with the axioms of ZFC), we can define points, joins, meets and infinite closeness. Most important, we can develop a dimension theory based on notions like path, circle, line (=one-dimensional continuum), simple line and surface (=two-dimensional continuum), recovering thereby in a rigorous way Poincaré's well-known intuitive idea that dimension expresses the ways in which a continuum can be torn apart. We outline a classification of lines according to the number of circles and branching points they contain. The ordering (C,≤) is a topped and bottomed, atomic, almost dense and complete partial ordering, weaker than a lattice. Continuous transformations from C to C are also defined in a natural way and results about them are proved.
Keywords No keywords specified (fix it)
Categories No categories specified
(categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,360
External links
  •   Try with proxy.
  • Through your library Configure
    References found in this work BETA

    No references found.

    Citations of this work BETA

    No citations found.

    Similar books and articles
    Analytics

    Monthly downloads

    Sorry, there are not enough data points to plot this chart.

    Added to index

    2009-01-28

    Total downloads

    1 ( #306,230 of 1,088,810 )

    Recent downloads (6 months)

    0

    How can I increase my downloads?

    My notes
    Sign in to use this feature


    Discussion
    Start a new thread
    Order:
    There  are no threads in this forum
    Nothing in this forum yet.