The order structure of continua

Synthese 113 (3):381-421 (1997)
A continuum is here a primitive notion intended to correspond precisely to a path-connected subset of the usual euclidean space. In contrast, however, to the traditional treatment, we treat here continua not as pointsets, but as irreducible entities equipped only with a partial ordering ≤ interpreted as parthood. Our aim is to examine what basic topological and geometric properties of continua can be expressed in the language of ≤, and what principles we need in order to prove elementary facts about them. Surprisingly enough ≤ suffices to formulate the very heart of continuity (=jumpless and gapless transitions) in a general setting. Further, using a few principles about ≤ (together with the axioms of ZFC), we can define points, joins, meets and infinite closeness. Most important, we can develop a dimension theory based on notions like path, circle, line (=one-dimensional continuum), simple line and surface (=two-dimensional continuum), recovering thereby in a rigorous way Poincaré's well-known intuitive idea that dimension expresses the ways in which a continuum can be torn apart. We outline a classification of lines according to the number of circles and branching points they contain. The ordering (C,≤) is a topped and bottomed, atomic, almost dense and complete partial ordering, weaker than a lattice. Continuous transformations from C to C are also defined in a natural way and results about them are proved.
Keywords Philosophy   Philosophy   Epistemology   Logic   Metaphysics   Philosophy of Language
Categories No categories specified
(categorize this paper)
DOI 10.1023/A:1005094430329
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 23,305
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

38 ( #124,942 of 1,932,585 )

Recent downloads (6 months)

23 ( #24,046 of 1,932,585 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.