The shortest possible length of the longest implicational axiom

Journal of Philosophical Logic 25 (1):101 - 108 (1996)
Abstract
A four-valued matrix is presented which validates all theorems of the implicational fragment, IF, of the classical sentential calculus in which at most two distinct sentence letters occur. The Wajsberg/Diamond-McKinsley Theorem for IF follows as a corollary: every complete set of axioms (with substitution and detachment as rules) must include at least one containing occurrences of three or more distinct sentence letters. Additionally, the matrix validates all IF theses built from nine or fewer occurrences of connectives and letters. So the classic result of Jagkovski for the full sentential calculus -that every complete axiom set must contain either two axioms of length at least nine or else one of length at least eleven-can be improved in the implicational case: every complete axiom set for IF must contain at least one axiom eleven or more characters long. Both results are "best possible", and both apply as well to most subsystems of IF, e.g., the implicational fragments of the standard relevance logics, modal logics, the relatives of implicational intutionism, and logics in the Lukasiewicz family
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 11,365
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

11 ( #138,606 of 1,102,781 )

Recent downloads (6 months)

10 ( #20,958 of 1,102,781 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.