Cross-count identity, distinctness, and the theory of internal and external relations

Philosophical Studies 151 (2):265 - 283 (2010)
Abstract
Baxter (Australas J Philos 79: 449-464, 2001) proposes an ingenious solution to the problem of instantiation based on his theory of cross-count identity. His idea is that where a particular instantiates a universal it shares an aspect with that universal. Both the particular and the universal are numerically identical with the shared aspect in different counts. Although Baxter does not say exactly what a count is, it appears that he takes ways of counting as mysterious primitives against which different numerical identities are defined. In contrast, I defend the idea— suggested, though not quite endorsed, by Baxter himself—that counts are independent dimensions of numerical identity. Different ways of counting are explained by the existence of these different sorts of identity (i.e., counts). For the instantiation of a universal by a particular, I propose one dimension concerned with the individuation of particulars (the p-count) and another dimension concerned with the individuation of universals (the u-count). On that basis, I give a clear definition of cross-count identity that explains its asymmetrical nature (i.e., the fact that particulars instantiate universais, but not vice versa). I extend the theory to a third dimension—that of time, or the t-count—and thereby defend Baxter's ideas on change, and the contingency of instantiation. Baxter (Mind 97(388): 575-582, 1988; Australas J Philos 79: 449-464, 2001) proposes the related idea of composition as (cross-count) identity. Parts are individually cross-count identical with the wholes that they constitute, and they collectively share all aspects across counts with those wholes. I propose an innovation by which totality is shared distinctness across counts. The theory applies to both the totality of particulars that instantiate any given universal, and the totality of parts that constitute any given whole. I argue that this has several advantages over Armstrong's view, which is based on a dubious external totalling relation. I also argue that Armstrong's theory of numbers (or quantities) as internal relations ought to be rejected in favour of an account based on identity and distinctness. The paper concludes with a careful analysis of external relations in Baxter's framework. I argue that we must recognise one further dimension of identity in order to differentiate between, e.g., the aspects of Abelard insofar as he loves Heloise and Abelard insofar as he loves Isobel. Each of these aspects is identical with Abelard and identical with loving-by, yet they must be in some way distinct. I therefore propose the r-count, in which multiple distinct relational properties are the very same relation (-part). The existence of these four independent dimensions explains the fact that particulars, universals, relations, and times are fundamentally different sorts of things in the ontology. Each is individuated with respect to a different dimension of identity
Keywords Metaphysics  Instantiation  Numbers  Totality  Armstrong  Relations
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 10,374
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA
D. M. Armstrong (1993). A World of States of Affairs. Philosophical Perspectives 7:429-440.
Donald L. M. Baxter (2001). Instantiation as Partial Identity. Australasian Journal of Philosophy 79 (4):449 – 464.

View all 7 references

Citations of this work BETA
Similar books and articles
Analytics

Monthly downloads

Added to index

2009-10-03

Total downloads

36 ( #45,987 of 1,096,875 )

Recent downloads (6 months)

5 ( #53,842 of 1,096,875 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.