Decision problems for classes of diagonalizable algebras

Studia Logica 44 (1):87 - 89 (1985)
We make use of a Theorem of Burris-McKenzie to prove that the only decidable variety of diagonalizable algebras is that defined by 0=1. Any variety containing an algebra in which 01 is hereditarily undecidable. Moreover, any variety of intuitionistic diagonalizable algebras is undecidable.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,360
External links
  • Through your library Configure
    References found in this work BETA
    Citations of this work BETA

    No citations found.

    Similar books and articles

    Monthly downloads

    Sorry, there are not enough data points to plot this chart.

    Added to index


    Total downloads

    1 ( #306,223 of 1,088,873 )

    Recent downloads (6 months)


    How can I increase my downloads?

    My notes
    Sign in to use this feature

    Start a new thread
    There  are no threads in this forum
    Nothing in this forum yet.