Logic games are complete for game logics

Studia Logica 75 (2):183-203 (2003)
Abstract
Game logics describe general games through powers of players for forcing outcomes. In particular, they encode an algebra of sequential game operations such as choice, dual and composition. Logic games are special games for specific purposes such as proof or semantical evaluation for first-order or modal languages. We show that the general algebra of game operations coincides with that over just logical evaluation games, whence the latter are quite general after all. The main tool in proving this is a representation of arbitrary games as modal or first-order evaluation games. We probe how far our analysis extends to product operations on games. We also discuss some more general consequences of this new perspective for standard logic.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,360
External links
  •   Try with proxy.
  • Through your library Configure
    References found in this work BETA

    No references found.

    Citations of this work BETA
    Similar books and articles
    Analytics

    Monthly downloads

    Added to index

    2009-01-28

    Total downloads

    9 ( #128,915 of 1,089,057 )

    Recent downloads (6 months)

    0

    How can I increase my downloads?

    My notes
    Sign in to use this feature


    Discussion
    Start a new thread
    Order:
    There  are no threads in this forum
    Nothing in this forum yet.