Normal forms for characteristic functions on n-ary relations

Abstract
Functions of type n are characteristic functions on n-ary relations. Keenan [5] established their importance for natural language semantics, by showing that natural language has many examples of irreducible type n functions, i.e., functions of type n that cannot be represented as compositions of unary functions. Keenan proposed some tests for reducibility, and Dekker [3] improved on these by proposing an invariance condition that characterizes the functions with a reducible counterpart with the same behaviour on product relations. The present paper generalizes the notion of reducibility (a quantifier is reducible if it can be represented as a composition of quantifiers of lesser, but not necessarily unary, types), proposes a direct criterion for reducibility, and establishes a diamond theorem and a normal form theorem for reduction. These results are then used to show that every positive n function has a unique representation as a composition of positive irreducible functions, and to give an algorithm for finding this representation. With these formal tools it can be established that natural language has examples of n-ary quantificational expressions that cannot be reduced to any composition of quantifiers of lesser degree.
Keywords No keywords specified (fix it)
Categories No categories specified
(categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 10,374
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

4 ( #247,771 of 1,096,845 )

Recent downloads (6 months)

3 ( #106,891 of 1,096,845 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.