Rule separation and embedding theorems for logics without weakening

Studia Logica 76 (2):241-274 (2004)
Abstract
A full separation theorem for the derivable rules of intuitionistic linear logic without bounds, 0 and exponentials is proved. Several structural consequences of this theorem for subreducts of (commutative) residuated lattices are obtained. The theorem is then extended to the logic LR + and its proof is extended to obtain the finite embeddability property for the class of square increasing residuated lattices.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 10,337
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA
James G. Raftery (2013). Order algebraizable logics. Annals of Pure and Applied Logic 164 (3):251-283.
Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

3 ( #279,420 of 1,096,601 )

Recent downloads (6 months)

1 ( #258,571 of 1,096,601 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.