Syllogistics = monotonicity + symmetry + existential import

Syllogistics reduces to only two rules of inference: monotonicity and symmetry, plus a third if one wants to take existential import into account. We give an implementation that uses only the monotonicity and symmetry rules, with an addendum for the treatment of existential import. Soundness follows from the monotonicity properties and symmetry properties of the Aristotelean quantifiers, while completeness for syllogistic theory is proved by direct inspection of the valid syllogisms. Next, the valid syllogisms are decomposed in terms of the rules they involve. The implementation uses Haskell [8], and is given in ‘literate programming’ style [9].
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 16,667
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

12 ( #205,927 of 1,726,249 )

Recent downloads (6 months)

4 ( #183,615 of 1,726,249 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.