Why vagueness is a mystery

Acta Analytica 17 (1):11 - 17 (2002)
This paper considers two “mysteries” having to do with vagueness. The first pertains to existence. An argument is presented for the following conclusion: there are possible cases in which ‘There exists something that is F’ is of indeterminate truth-value and with respect to which it is not assertable that there are borderline-cases of “being F.” It is contended that we have no conception of vagueness that makes this result intelligible. The second mystery has to do with “ordinary” vague predicates, such as ‘tall’. An argument is presented for the conclusion that although there are people who are “tall to degree 1”—definitely tall, tall without qualification—, no greatest lower bound can be assigned to the set of numbers n such that a man who is n centimeters tall is tall to degree 1. But, since this set is bounded from below, this result seems to contradict a well-known property of the real numbers.
Keywords vagueness  borderline cases  sorites  existence  composition
Categories No categories specified
(categorize this paper)
DOI 10.1007/s12136-002-1001-9
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 23,316
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

84 ( #56,691 of 1,902,524 )

Recent downloads (6 months)

2 ( #329,673 of 1,902,524 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.