Zeno's paradoxes and the tile argument

Philosophy of Science 54 (2):295-302 (1987)
Abstract
A solution of the zeno paradoxes in terms of a discrete space is usually rejected on the basis of an argument formulated by hermann weyl, The so-Called tile argument. This note shows that, Given a set of reasonable assumptions for a discrete geometry, The weyl argument does not apply. The crucial step is to stress the importance of the nonzero width of a line. The pythagorean theorem is shown to hold for arbitrary right triangles
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 10,561
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

20 ( #82,881 of 1,098,129 )

Recent downloads (6 months)

1 ( #283,807 of 1,098,129 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.