A calculus of substitutions for DPL

Studia Logica 68 (3):357-387 (2001)
Abstract
We consider substitutions in order sensitive situations, having in the back of our minds the case of dynamic predicate logic (DPL) with a stack semantics. We start from the semantic intuition that substitutions are move instructions on stacks: the syntactic operation [y/x] is matched by the instruction to move the value of the y-stack to the x-stack. We can describe these actions in the positive fragment of DPLE. Hence this fragment counts as a logic for DPL-substitutions. We give a calculus for the fragment and prove soundness and completeness.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 12,127
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

9 ( #166,276 of 1,102,452 )

Recent downloads (6 months)

7 ( #40,236 of 1,102,452 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.