A generic framework for adaptive vague logics

Studia Logica 90 (3):385 - 405 (2008)
In this paper, we present a generic format for adaptive vague logics. Logics based on this format are able to (1) identify sentences as vague or non-vague in light of a given set of premises, and to (2) dynamically adjust the possible set of inferences in accordance with these identifications, i.e. sentences that are identified as vague allow only for the application of vague inference rules and sentences that are identified as non-vague also allow for the application of some extra set of classical logic rules. The generic format consists of a set of minimal criteria that must be satisfied by the vague logic in casu in order to be usable as a basis for an adaptive vague logic. The criteria focus on the way in which the logic deals with a special ⊡-operator. Depending on the kind of logic for vagueness that is used as a basis for the adaptive vague logic, this operator can be interpreted as completely true, definitely true, clearly true , etc. It is proven that a wide range of famous logics for vagueness satisfies these criteria when extended with a specific ⊡-operator, e.g. fuzzy basic logic and its well known extensions, cf. [7], super- and subvaluationist logics, cf. [6], [9], and clarity logic, cf. [13]. Also a fuzzy logic is presented that can be used for an adaptive vague logic that can deal with higher-order vagueness. To illustrate the theory, some toy-examples of adaptive vague proofs are provided.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 16,667
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

14 ( #184,535 of 1,726,249 )

Recent downloads (6 months)

4 ( #183,615 of 1,726,249 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.