Adaptive logics using the minimal abnormality strategy are 1 \Pi^11 -complex

Synthese 167 (1):93 - 104 (2009)
In this article complexity results for adaptive logics using the minimal abnormality strategy are presented. It is proven here that the consequence set of some recursive premise sets is $\Pi _1^1 - complete$ . So, the complexity results in (Horsten and Welch, Synthese 158:41–60,2007) are mistaken for adaptive logics using the minimal abnormality strategy
Keywords Adaptive logics  Minimal abnormality  Complexity  Dynamic proofs
Categories No categories specified
(categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,360
External links
  •   Try with proxy.
  • Through your library Configure
    References found in this work BETA
    Diderik Batens (2004). The Need for Adaptative Logics in Epistemology. In Shadid Rahman, John Symons, Dov Gabbay & Jean Bendegem (eds.), Logic, Epistemology, and the Unity of Science. Kluwer. 459-485.

    View all 6 references

    Citations of this work BETA
    Similar books and articles

    Monthly downloads

    Added to index


    Total downloads

    7 ( #149,801 of 1,089,157 )

    Recent downloads (6 months)

    1 ( #69,735 of 1,089,157 )

    How can I increase my downloads?

    My notes
    Sign in to use this feature

    Start a new thread
    There  are no threads in this forum
    Nothing in this forum yet.