Logic, probability, and coherence

Philosophy of Science 68 (1):95-110 (2001)
How does deductive logic constrain probability? This question is difficult for subjectivistic approaches, according to which probability is just strength of (prudent) partial belief, for this presumes logical omniscience. This paper proposes that the way in which probability lies always between possibility and necessity can be made precise by exploiting a minor theorem of de Finetti: In any finite set of propositions the expected number of truths is the sum of the probabilities over the set. This is generalized to apply to denumerable languages. It entails that the sum of probabilities can neither exceed nor be exceeded by the cardinalities of all consistent and closed (within the set) subsets. In general any numerical function on sentences is said to be logically coherent if it satisfies this condition. Logical coherence allows the relativization of necessity: A function p on a language is coherent with respect to the concept T of necessity iff there is no set of sentences on which the sum of p exceeds or is exceeded by the cardinality of every T-consistent and T-closed (within the set) subset of the set. Coherence is easily applied as well to sets on which the sum of p does not converge. Probability should also be relativized by necessity: A T-probability assigns one to every T-necessary sentence and is additive over disjunctions of pairwise T-incompatible sentences. Logical T-coherence is then equivalent to T-probability: All and only T-coherent functions are T-probabilities
Keywords No keywords specified (fix it)
Categories (categorize this paper)
DOI 10.1086/392868
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 23,316
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

189 ( #20,691 of 1,913,505 )

Recent downloads (6 months)

3 ( #269,381 of 1,913,505 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.