Categorical invariance and structural complexity in human concept learning

Abstract
An alternative account of human concept learning based on an invariance measure of the categorical stimulus is proposed. The categorical invariance model (CIM) characterizes the degree of structural complexity of a Boolean category as a function of its inherent degree of invariance and its cardinality or size. To do this we introduce a mathematical framework based on the notion of a Boolean differential operator on Boolean categories that generates the degrees of invariance (i.e., logical manifold) of the category in respect to its dimensions. Using this framework, we propose that the structural complexity of a Boolean category is indirectly proportional to its degree of categorical invariance and directly proportional to its cardinality or size. Consequently, complexity and invariance notions are formally unified to account for concept learning difficulty. Beyond developing the above unifying mathematical framework, the CIM is significant in that: (1) it precisely predicts the key learning difficulty ordering of the SHJ [Shepard, R. N., Hovland, C. L.,&Jenkins, H. M. (1961). Learning and memorization of classifications. Psychological Monographs: General and Applied, 75(13), 1-42] Boolean category types consisting of three binary dimensions and four positive examples; (2) it is, in general, a good quantitative predictor of the degree of learning difficulty of a large class of categories (in particular, the 41 category types studied by Feldman [Feldman, J. (2000). Minimization of Boolean complexity in human concept learning. Nature, 407, 630-633]); (3) it is, in general, a good quantitative predictor of parity effects for this large class of categories; (4) it does all of the above without free parameters; and (5) it is cognitively plausible (e.g., cognitively tractable)
Keywords No keywords specified (fix it)
Categories No categories specified
(categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index Translate to english
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 11,365
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA
Similar books and articles
Analytics

Monthly downloads

Added to index

2010-11-24

Total downloads

10 ( #148,407 of 1,102,781 )

Recent downloads (6 months)

1 ( #296,987 of 1,102,781 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.