Chains of end elementary extensions of models of set theory

Journal of Symbolic Logic 63 (3):1116-1136 (1998)
Large cardinals arising from the existence of arbitrarily long end elementary extension chains over models of set theory are studied here. In particular, we show that the large cardinals obtained in this fashion (`unfoldable cardinals') lie in the boundary of the propositions consistent with `V = L' and the existence of 0 ♯ . We also provide an `embedding characterisation' of the unfoldable cardinals and study their preservation and destruction by various forcing constructions
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,351
External links
  •   Try with proxy.
  •   Try with proxy.
  • Through your library Configure
    References found in this work BETA

    No references found.

    Citations of this work BETA
    Jason Aaron Schanker (2013). Partial Near Supercompactness. Annals of Pure and Applied Logic 164 (2):67-85.
    Similar books and articles

    Monthly downloads

    Added to index


    Total downloads

    2 ( #258,148 of 1,088,384 )

    Recent downloads (6 months)

    1 ( #69,601 of 1,088,384 )

    How can I increase my downloads?

    My notes
    Sign in to use this feature

    Start a new thread
    There  are no threads in this forum
    Nothing in this forum yet.