Heights of models of ZFC and the existence of end elementary extensions II

Journal of Symbolic Logic 64 (3):1111-1124 (1999)
Abstract
The existence of End Elementary Extensions of models M of ZFC is related to the ordinal height of M, according to classical results due to Keisler, Morley and Silver. In this paper, we further investigate the connection between the height of M and the existence of End Elementary Extensions of M. In particular, we prove that the theory `ZFC + GCH + there exist measurable cardinals + all inaccessible non weakly compact cardinals are possible heights of models with no End Elementary Extensions' is consistent relative to the theory `ZFC + GCH + there exist measurable cardinals + the weakly compact cardinals are cofinal in ON'. We also provide a simpler coding that destroys GCH but otherwise yields the same result
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 11,819
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

4 ( #264,398 of 1,099,918 )

Recent downloads (6 months)

3 ( #127,260 of 1,099,918 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.