A semantic approach to comparative verisimilitude

Abstract
The importance of the comparative notion of versimilitude, or truthlikeness, for a realist conception of knowledge follows from two modest ‘realist’ assumptions, namely, that the aim of an enquiry, as an enquiry, is the truth of some matter; and that one false theory may realize this aim better than another. However, there seem to be two ways in which one (false) theory can realize this aim better than another. One (false) theory can be closer to the truth than another either by being preponderantly more accurate in its predictions or by providing more comprehensive information about the system (or class of systems) at issue. This paper presents a model-theoretic approach to the analysis of the comprehensiveness-related component of the comparative notion of versimilitude. The machinery of the ‘semantic’ view of theories is applied to the problem of providing necessary and sufficient conditions for the truth of sentences of the form, ‘B is truth-increasing with respect to A’, where A and B are taken to be sets of structures.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,360
External links
  • Through your library Configure
    References found in this work BETA

    No references found.

    Citations of this work BETA

    No citations found.

    Similar books and articles
    Analytics

    Monthly downloads

    Added to index

    2009-01-28

    Total downloads

    9 ( #128,915 of 1,089,057 )

    Recent downloads (6 months)

    1 ( #69,801 of 1,089,057 )

    How can I increase my downloads?

    My notes
    Sign in to use this feature


    Discussion
    Start a new thread
    Order:
    There  are no threads in this forum
    Nothing in this forum yet.