The evolution of the cooperative group

Acta Biotheoretica 25 (1):1-43 (1976)
A simple model, illustrating the transition from a population of free swimming, solitary cells to one consisting of small colonies serves as a basis to discuss the evolution of the cooperative group. The transition is the result of a mutation of the dynamics of cell division, delayed cell separation leads to colonies of four cells. With this mutation cooperative features appear, such as synchronised cell divisions within colonies and coordinated flagellar function which enables the colony to swim in definite directions. The selective advantages under given, environmental conditions are defined and the periods necessary for complete allelic replacement in small populations are calculated for asexual and sexual reproduction. The assumption of a steady-state population during allelic substitution is critically considered, particularly under conditions of competition. It is shown that density-dependent population control must operate in the process of selection. Sexual reproduction slows down the rate of selection even though all cells dre haploid. This phenomenon can be explained in general terms of `organizational dominance', where individual units coordinate the function of their neighbours which may be of a different allelotype.Cooperativity is pointed out as an a priori systemic feature which resides in the sub-units of systems, group formation and coordination appears thus as an almost inevitable event. A particular type of system described as ‘closed cycle of positive fitness interaction’ is discussed in more detail. It has the remarkable feature that its members cannot compete with each other; selection takes place between whole cycles .Gonium has a wide spectrum of `somatic plasticity' which enables it to assume various colonial configurations depending on physiological and environmental conditions. This feature can be explained as the result of dynamic flexibilities on the macro-molecular level. The particular relationship between the vast, molecular complexity and the relative simple dynamics of the cell cycle must lead eventually to the genetic fixation of an environmentally induced phenotype
Keywords No keywords specified (fix it)
Categories (categorize this paper)
DOI 10.1007/BF02113739
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 15,904
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

7 ( #292,059 of 1,725,449 )

Recent downloads (6 months)

5 ( #134,647 of 1,725,449 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.