Decision making with imprecise probabilities

Orthodox Bayesian decision theory requires an agent’s beliefs representable by a real-valued function, ideally a probability function. Many theorists have argued this is too restrictive; it can be perfectly reasonable to have indeterminate degrees of belief. So doxastic states are ideally representable by a set of probability functions. One consequence of this is that the expected value of a gamble will be imprecise. This paper looks at the attempts to extend Bayesian decision theory to deal with such cases, and concludes that all proposals advanced thus far have been incoherent. A more modest, but coherent, alternative is proposed. Keywords: Imprecise probabilities, Arrow’s theorem.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 22,660
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

61 ( #74,935 of 1,938,823 )

Recent downloads (6 months)

2 ( #294,284 of 1,938,823 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.