Homogeneous and universal dedekind algebras

Studia Logica 64 (2):173-192 (2000)
A Dedekind algebra is an order pair (B, h) where B is a non-empty set and h is a similarity transformation on B. Each Dedekind algebra can be decomposed into a family of disjoint, countable subalgebras called the configurations of the algebra. There are 0 isomorphism types of configurations. Each Dedekind algebra is associated with a cardinal-valued function on called its configuration signature. The configuration signature counts the number of configurations in each isomorphism type which occur in the decomposition of the algebra. Two Dedekind algebras are isomorphic iff their configuration signatures are identical. It is shown that configuration signatures can be used to characterize the homogeneous, universal and homogeneous-universal Dedekind algebras. This characterization is used to prove various results about these subclasses of Dedekind algebras.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,360
External links
  • Through your library Configure
    References found in this work BETA

    No references found.

    Citations of this work BETA
    Similar books and articles

    Monthly downloads

    Added to index


    Total downloads

    2 ( #258,312 of 1,089,155 )

    Recent downloads (6 months)


    How can I increase my downloads?

    My notes
    Sign in to use this feature

    Start a new thread
    There  are no threads in this forum
    Nothing in this forum yet.