The first-order theories of dedekind algebras

Studia Logica 73 (3):337 - 365 (2003)
A Dedekind Algebra is an ordered pair (B,h) where B is a non-empty set and h is an injective unary function on B. Each Dedekind algebra can be decomposed into a family of disjoint, countable subalgebras called configurations of the Dedekind algebra. There are N0 isomorphism types of configurations. Each Dedekind algebra is associated with a cardinal-valued function on omega called its configuration signature. The configuration signature of a Dedekind algebra counts the number of configurations in the decomposition of the algebra in each isomorphism type.The configuration signature of a Dedekind algebra encodes the structure of that algebra in the sense that two Dedekind algebras are isomorphic iff their configuration signatures are identical. Configuration signatures are used to establish various results in the first-order model theory of Dedekind algebras. These include categoricity results for the first-order theories of Dedekind algebras and existence and uniqueness results for homogeneous, universal and saturated Dedekind algebras. Fundamental to these results is a condition on configuration signatures that is necessary and sufficient for elementary equivalence.
Keywords Philosophy   Logic   Mathematical Logic and Foundations   Computational Linguistics
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 23,201
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

23 ( #204,883 of 1,940,950 )

Recent downloads (6 months)

1 ( #457,798 of 1,940,950 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.