Inductive inference based on probability and similarity

We advance a theory of inductive inference designed to predict the conditional probability that certain natural categories satisfy a given predicate given that others do (or do not). A key component of the theory is the similarity of the categories to one another. We measure such similarities in terms of the overlap of metabolic activity in voxels of various posterior regions of the brain in response to viewing instances of the category. The theory and similarity measure are tested against averaged probability judgments elicited from a separate group of subjects. Fruit serve as categories in the present experiment; results are compared to earlier work with mammals.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index Translate to english
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 15,831
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

6 ( #321,769 of 1,724,771 )

Recent downloads (6 months)

3 ( #210,951 of 1,724,771 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.