On recursive enumerability with finite repetitions

Journal of Symbolic Logic 64 (3):927-945 (1999)
Abstract
It is an open problem within the study of recursively enumerable classes of recursively enumerable sets to characterize those recursively enumerable classes which can be recursively enumerated without repetitions. This paper is concerned with a weaker property of r.e. classes, namely that of being recursively enumerable with at most finite repetitions. This property is shown to behave more naturally: First we prove an extension theorem for classes satisfying this property. Then the analogous theorem for the property of recursively enumerable classes of being recursively enumerable with a bounded number of repetitions is shown not to hold. The index set of the property of recursively enumerable classes "having an enumeration with finite repetitions" is shown to be Σ 0 6 -complete
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 11,371
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

6 ( #206,947 of 1,102,868 )

Recent downloads (6 months)

6 ( #46,874 of 1,102,868 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.