On recursive enumerability with finite repetitions

Journal of Symbolic Logic 64 (3):927-945 (1999)
It is an open problem within the study of recursively enumerable classes of recursively enumerable sets to characterize those recursively enumerable classes which can be recursively enumerated without repetitions. This paper is concerned with a weaker property of r.e. classes, namely that of being recursively enumerable with at most finite repetitions. This property is shown to behave more naturally: First we prove an extension theorem for classes satisfying this property. Then the analogous theorem for the property of recursively enumerable classes of being recursively enumerable with a bounded number of repetitions is shown not to hold. The index set of the property of recursively enumerable classes "having an enumeration with finite repetitions" is shown to be Σ 0 6 -complete
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,351
External links
  •   Try with proxy.
  •   Try with proxy.
  • Through your library Configure
    References found in this work BETA

    No references found.

    Citations of this work BETA

    No citations found.

    Similar books and articles

    Monthly downloads

    Sorry, there are not enough data points to plot this chart.

    Added to index


    Total downloads


    Recent downloads (6 months)


    How can I increase my downloads?

    My notes
    Sign in to use this feature

    Start a new thread
    There  are no threads in this forum
    Nothing in this forum yet.