A neo-formalist approach to mathematical truth

Abstract
I outline a variant on the formalist approach to mathematics which rejects textbook formalism's highly counterintuitive denial that mathematical theorems express truths while still avoiding ontological commitment to a realm of abstract objects. The key idea is to distinguish the sense of a sentence from its explanatory truth conditions. I then look at various problems with the neo-formalist approach, in particular at the status of the notion of proof in a formal calculus and at problems which Gödelian results seem to pose for the tight link assumed between truth and proof.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,357
External links
  •   Try with proxy.
  • Through your library Only published papers are available at libraries
    References found in this work BETA

    No references found.

    Citations of this work BETA

    No citations found.

    Similar books and articles
    Analytics

    Monthly downloads

    Added to index

    2009-01-28

    Total downloads

    52 ( #25,807 of 1,088,725 )

    Recent downloads (6 months)

    2 ( #42,750 of 1,088,725 )

    How can I increase my downloads?

    My notes
    Sign in to use this feature


    Discussion
    Start a new thread
    Order:
    There  are no threads in this forum
    Nothing in this forum yet.