Proof and canonical proof

Synthese 113 (2):265-284 (1997)
Certain anti-realisms about mathematics are distinguished by their taking proof rather than truth as the central concept in the account of the meaning of mathematical statements. This notion of proof which is meaning determining or canonical must be distinguished from a notion of demonstration as more generally conceived. This paper raises a set of objections to Dummett's characterisation of the notion via the notion of a normalised natural deduction proof. The main complaint is that Dummett's use of normalised natural deduction proofs relies on formalisation playing a role for which it is unfit. Instead I offer an alternative account which does not rely on formalisation and go on to examine the relation of proof to canonical proof, arguing that rather than requiring an explicit characterisation of canonical proofs we need to be more aware of the complexities of that relation.
Keywords Philosophy   Philosophy   Epistemology   Logic   Metaphysics   Philosophy of Language
Categories (categorize this paper)
DOI 10.1023/A:1005067014400
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 16,667
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

25 ( #120,994 of 1,726,249 )

Recent downloads (6 months)

2 ( #289,836 of 1,726,249 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.