Countable unions of simple sets in the core model

Journal of Symbolic Logic 61 (1):293-312 (1996)
Abstract
We follow [8] in asking when a set of ordinals $X \subseteq \alpha$ is a countable union of sets in K, the core model. We show that, analogously to L, and X closed under the canonical Σ 1 Skolem function for K α can be so decomposed provided K is such that no ω-closed filters are put on its measure sequence, but not otherwise. This proviso holds if there is no inner model of a weak Erdős-type property
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 11,825
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Sorry, there are not enough data points to plot this chart.

Added to index

2009-01-28

Total downloads

0

Recent downloads (6 months)

0

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.