Arrow's Theorem with a fixed feasible alternative

Arrow's Theorem, in its social choice function formulation, assumes that all nonempty finite subsets of the universal set of alternatives is potentially a feasible set. We demonstrate that the axioms in Arrow's Theorem, with weak Pareto strengthened to strong Pareto, are consistent if it is assumed that there is a prespecified alternative which is in every feasible set. We further show that if the collection of feasible sets consists of all subsets of alternatives containing a prespecified list of alternatives and if there are at least three additional alternatives not on this list, replacing nondictatorship by anonymity results in an impossibility theorem
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 15,831
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

11 ( #212,738 of 1,724,748 )

Recent downloads (6 months)

1 ( #349,121 of 1,724,748 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.