On Continuity: Aristotle versus Topology?

Abstract
This paper begins by pointing out that the Aristotelian conception of continuity (synecheia) and the contemporary topological account share the same intuitive, proto-topological basis: the conception of a ?natural whole? or unity without joints or seams. An argument of Aristotle to the effect that what is continuous cannot be constituted of ?indivisibles? (e.g., points) is examined from a topological perspective. From that perspective, the argument fails because Aristotle does not recognize a collective as well as a distributive concept of a multiplicity of points. It is the former concept that allows contemporary topology to identify some point sets with spatial regions (in the proto-topological sense of this term). This identification, in turn, allows contemporary topology to do what Aristotle was unwilling to do: to conceive the property of continuity, as well as the properties of having measure greater than zero and having n- dimension, as emergent properties. Thus, a point set can be continuous (connected) although none of its subsets of sufficiently smaller cardinality can be. Finally, the paper discusses the manner in which a topological principle, viz., the principle that none of the singletons of points of a continuum can be open sets of that continuum, captures certain aspects of the Aristotelian proto-topological conception of the relation between points and continua. E.g., for both Aristotle and contemporary topology, points in a continuum exist simple as limits of the remainder of the continuum: their singletons have empty ?interiors? and, hence, they are not ?chunks? (topologically, regular closed set) of the continuum
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,357
External links
  • Through your library Configure
    References found in this work BETA

    No references found.

    Citations of this work BETA
    Similar books and articles
    Analytics

    Monthly downloads

    Added to index

    2009-08-27

    Total downloads

    36 ( #40,434 of 1,088,810 )

    Recent downloads (6 months)

    2 ( #42,743 of 1,088,810 )

    How can I increase my downloads?

    My notes
    Sign in to use this feature


    Discussion
    Start a new thread
    Order:
    There  are no threads in this forum
    Nothing in this forum yet.