On Continuity: Aristotle versus Topology?

This paper begins by pointing out that the Aristotelian conception of continuity (synecheia) and the contemporary topological account share the same intuitive, proto-topological basis: the conception of a ?natural whole? or unity without joints or seams. An argument of Aristotle to the effect that what is continuous cannot be constituted of ?indivisibles? (e.g., points) is examined from a topological perspective. From that perspective, the argument fails because Aristotle does not recognize a collective as well as a distributive concept of a multiplicity of points. It is the former concept that allows contemporary topology to identify some point sets with spatial regions (in the proto-topological sense of this term). This identification, in turn, allows contemporary topology to do what Aristotle was unwilling to do: to conceive the property of continuity, as well as the properties of having measure greater than zero and having n- dimension, as emergent properties. Thus, a point set can be continuous (connected) although none of its subsets of sufficiently smaller cardinality can be. Finally, the paper discusses the manner in which a topological principle, viz., the principle that none of the singletons of points of a continuum can be open sets of that continuum, captures certain aspects of the Aristotelian proto-topological conception of the relation between points and continua. E.g., for both Aristotle and contemporary topology, points in a continuum exist simple as limits of the remainder of the continuum: their singletons have empty ?interiors? and, hence, they are not ?chunks? (topologically, regular closed set) of the continuum
Keywords No keywords specified (fix it)
Categories (categorize this paper)
DOI 10.1080/01445348808837121
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 23,305
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

56 ( #85,665 of 1,932,568 )

Recent downloads (6 months)

3 ( #272,097 of 1,932,568 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.