From Bayesian Epistemology to Inductive Logic

Inductive logic admits a variety of semantics (Haenni et al., 2011, Part 1). This paper develops semantics based on the norms of Bayesian epistemology (Williamson, 2010, Chapter 7). §1 introduces the semantics and then, in §2, the paper explores methods for drawing inferences in the resulting logic and compares the methods of this paper with the methods of Barnett and Paris (2008). §3 then evaluates this Bayesian inductive logic in the light of four traditional critiques of inductive logic, arguing (i) that it is language independent in a key sense, (ii) that it admits connections with the Principle of Indifference but these connections do not lead to paradox, (iii) that it can capture the phenomenon of learning from experience, and (iv) that while the logic advocates scepticism with regard to some universal hypotheses, such scepticism is not problematic from the point of view of scientific theorising
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 21,476
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

75 ( #58,891 of 1,911,757 )

Recent downloads (6 months)

6 ( #115,873 of 1,911,757 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.