How to extend the semantic tableaux and cut-free versions of the second incompleteness theorem almost to Robinson's arithmetic Q

Journal of Symbolic Logic 67 (1):465-496 (2002)
Abstract
Let us recall that Raphael Robinson's Arithmetic Q is an axiom system that differs from Peano Arithmetic essentially by containing no Induction axioms [13], [18]. We will generalize the semantic-tableaux version of the Second Incompleteness Theorem almost to the level of System Q. We will prove that there exists a single rather long Π 1 sentence, valid in the standard model of the Natural Numbers and denoted as V, such that if α is any finite consistent extension of Q + V then α will be unable to prove its Semantic Tableaux consistency. The same result will also apply to axiom systems α with infinite cardinality when these infinite-sized axiom systems satisfy a minor additional constraint, called the Conventional Encoding Property. Our formalism will also imply that the semantic-tableaux version of the Second Incompleteness Theorem generalizes for the axiom system IΣ 0 , as well as for all its natural extensions. (This answers an open question raised twenty years ago by Paris and Wilkie [15].)
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 10,322
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA
Similar books and articles
Analytics

Monthly downloads

Sorry, there are not enough data points to plot this chart.

Added to index

2009-01-28

Total downloads

2 ( #322,275 of 1,096,510 )

Recent downloads (6 months)

2 ( #139,663 of 1,096,510 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.