Intervention, underdetermination, and theory generation

We consider the use of intervention data for eliminating the underdetermination in statistical modelling, and for guiding extensions of the statistical models. The leading example is factor analysis, a major statistical tool in the social sciences. We first relate indeterminacy in factor analysis to the problem of underdetermination. Then we draw a parallel between factor analysis models and Bayesian networks with hidden nodes, which allows us to clarify the use of intervention data for dealing with indeterminacy. It will be shown that in some cases, the indeterminacy can be resolved by an intervention. In the other cases, the intervention data suggest specific extensions of the model. The upshot is that intervention data can replace theoretical criteria that are typically employed in resolving underdetermination and theory change.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 16,667
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

60 ( #56,899 of 1,726,249 )

Recent downloads (6 months)

5 ( #147,227 of 1,726,249 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.