Advances in Modal Logic, Volume

Abstract
We study a propositional bimodal logic consisting of two S4 modalities £ and [a], together with the interaction axiom scheme a £ϕ → £ aϕ. In the intended semantics, the plain £ is given the McKinsey-Tarski interpretation as the interior operator of a topology, while the labelled [a] is given the standard Kripke semantics using a reflexive and transitive binary relation a. The interaction axiom expresses the property that the Ra relation is lower semi-continuous with respect to the topology. The class of topological Kripke frames characterised by the logic includes all frames over Euclidean space where Ra is the positive flow relation of a differential equation. We establish the completeness of the axiomatisation with respect to the intended class of topological Kripke frames, and investigate tableau calculi for the logic, although tableau completeness and decidability are still open questions.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index Translate to english
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,360
External links
  •   Try with proxy.
  • Through your library Only published papers are available at libraries
    References found in this work BETA

    No references found.

    Citations of this work BETA

    No citations found.

    Similar books and articles
    Philip Kremer (2009). Dynamic Topological S5. Annals of Pure and Applied Logic 160 (1):96-116.
    Gerard Allwein, Hilmi Demir & Lee Pike (2004). Logics for Classes of Boolean Monoids. Journal of Logic, Language and Information 13 (3):241-266.
    M. J. Cresswell (1995). Incompleteness and the Barcan Formula. Journal of Philosophical Logic 24 (4):379 - 403.
    Analytics

    Monthly downloads

    Sorry, there are not enough data points to plot this chart.

    Added to index

    2010-12-22

    Total downloads

    0

    Recent downloads (6 months)

    0

    How can I increase my downloads?

    My notes
    Sign in to use this feature


    Discussion
    Start a new thread
    Order:
    There  are no threads in this forum
    Nothing in this forum yet.