Computers, mathematical proof, and a priori knowledge

Abstract
The computer played an essential role in the proof given by Kenneth Appel and Kenneth Henken of the Four-Color Theorem (4CT).1 First proposed in 1852 by Francis Guthrie, the four color problem is to determine whether four colors are sufficient to color any map on a plane so that no adjacent regions have the same color. Appel and Heken’s proof involves a lemma that a certain ‘avoidable’ set U of configurations is reducible. The proof of this critical lemma requires certain combinatorial checks which are too long to do by hand. The job was done by an IBM 370/168, using over 1200 hours of computer time. In 1977, Appel and Heken, assisted by John Koch, published the proof, and the 4CT has since been considered an established result. No one has seen the entire proof of the reducibility lemma. It was too long to print out; even if it had been, no one would be able to run through it step by step.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,360
External links
  •   Try with proxy.
  • Through your library Only published papers are available at libraries
    References found in this work BETA

    No references found.

    Citations of this work BETA

    No citations found.

    Similar books and articles
    Analytics

    Monthly downloads

    Added to index

    2009-01-28

    Total downloads

    77 ( #14,322 of 1,089,155 )

    Recent downloads (6 months)

    1 ( #69,735 of 1,089,155 )

    How can I increase my downloads?

    My notes
    Sign in to use this feature


    Discussion
    Start a new thread
    Order:
    There  are no threads in this forum
    Nothing in this forum yet.